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ABSTRACT 

We show that an expansive Z 2 action on a compact abelian group is mea- 

surably isomorphic to a two-dimensional Bernoulli shift if and only if it 

has completely positive entropy. The proof uses the Mgebraic structure 

of such actions described by Kitchens and Schmidt and an algebraic char- 

acterisation of the K property due to Lind, Schmidt and the author. As 

a corollary, we note that an expansive Z 2 action on a compact abelian 

group is measurably isomorphic to a Bernoulli shift relative to the Pinsker 

algebra. A further corollary applies an argument of Lind to show that 

an expansive K action of Z 2 on a compact abelian group is exponentially 

recurrent. Finally an example is given of measurable isomorphism without 

topological conjugacy for Z ~ actions. 

1. In t roduc t ion  

We find conditions under which an expansive Z 2 action by continuous automor- 

phisms on a compact abelian group is measurably isomorphic to a 2-dimensional 

BernouUi shift. This is a special case of Conjecture 6.8 of [16]. 

The correspondence between Z d actions on compact abelian groups and mod- 

ules over the ring of Laurent polynomials in d commuting variables described 

by Kitchens and Schmidt, [10], will be used extensively. This correspondence 

enables dynamical properties of the action to be read off from the structure of 
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the module: ergodicity in [10], expansiveness and finiteness of the periodic points 

in [25], mixing properties in [24], entropy, measures of maximal entropy and the 

K property in [16]. For a more detailed description of this correspondence, see 

[10] and [16]. We remark that in the absence of a convenient notion of a "past", 
a Z 2 action is said to be K if the Pinsker algebra is trivial. 

For Z actions on compact abelian groups (continuous automorphisms), it is 

well known that ergodicity is equivalent to being measurably isomorphic to a 

Bernoulli shift. Ergodic automorphisms of compact abelian groups were shown 

to be K in 1964 by Rokhlin, [21]. In 1971, Katznelson showed that  an ergodic 

automorphism of the torus T" is measurably isomorphic to a Bernoulli shift, [8], 

and this was extended to ergodic automorphisms of the infinite torus T °O by Chu, 

[2], and Lind, [12]. Finally Lind, [13], showed that an ergodic automorphism of 

a compact group is measurably isomorphic to a Bernoulli shift. This was also 

shown independently by Miles and Thomas, [18]. 

We will associate to an expansive Z ~ action a module over the ring T¢ = 

Z[z±l, y+l]; the prime filtration of this module expresses the original action as a 

factor of an iterated skew product of actions whose corresponding modules are 

cyclic. The case of a cyclic module is dealt with in §3, where the corresponding 

action is shown to be almost block independent if it is K.  The primary decom- 

position and prime filtration is used in §4 to show that an expansive Z 2 action 

on a compact abelian group is measurably isomorphic to a Bernoulli shift if it is 

K.  In §5 we show that expansive systems corresponding to cyclic modules are 

exponentially recurrent if they are K.  

I am grateful to Klaus Schmidt for showing me the algebraic reduction used in 

Lemma 4.1 and for explaining to me the illustration used in §6(5). 

2. N o t a t i o n  a n d  p r e l i m i n a r i e s  

We now define the terms that we will be using, describe the correspondence be- 

tween Z 2 actions and R-modules of [10], and give some of the basic constructions. 

The integers, rationals, real numbers, and complex numbers will be denoted 

Z, Q, R, and C respectively. The additive (resp. multiplicative) circle group will 

be denoted T (resp. Sl). The dual group of a locally compact abelia~ group G 

will be denoted G. 

A Z 2 action on the compact abelian group X (all groups will be assumed 

metrizable) is given by a homomorphism a : Z 2 --* Aut(X), where Aut(X) is the 
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group of continuous automorphisms of X.  The  dual of the compact metric group 

X is a discrete countable group M = X and this group inherits the structure of 

an A-modu le  from the action a. This is defined by setting x • m = ~O,0)(m), 

y • m = ~(0,1)(m), and extending to an action of T~. Conversely, if M is a 

countable T~-module, then the duals of multiplication by x and y are commuting 
A 

automorphisms of the compact metric group XM = M, and so they define a Z 2 

action a M on XM.  

If Q : Z 2 ~ Z 2 is a homomorphism, denote the action (n, m) ~ aQ( , , ,  0 by 

Qa.  

If M is a cyclic module, M = T~/p for some ideal p C T~, then the dynamical 

system (XM,a M) may be realised explicitly as follows. Since 7~ ~ T z2 , and 

the duals of multiplication by x and y are the horizontal and vertical shifts 

respectively, X M  is a closed, shift invariant subgroup of T z~. If p = ( f l , . . .  , f t ) ,  

and each i f ( x ,  y) = ~-~,~s~pp(lJ) fJ " xmY'2  then 

x~/p {x•V z=l ~ = f~nX(kt+nl,k2+n2) 
nESupp(fJ ) 

= 0 mod 1, j = 1 , . . .  , l, (kl,  k2) • ~2}.  

The action a n/p is the restriction of the natural  shift action on T z2 to the shift 

invariant subgroup Xn/p .  

If p is an ideal in 7~, let Vc(P) = {(z,w) E C 2 ] f ( z , w )  = 0 for any f E p} 

denote the set of common zeros of p; if p is a prime ideal, then this is the affine 

variety associated to p. 

Let F = {1 , . . .  ,s}. Given two probabili ty measures/1 and v on F z2, and D 

a finite subset of Z 2, define the space of joinings JD(V, u) as follows. Write v o ,  

v D for the marginal measures induced by p and u on F D. If X is a probabili ty 

measure on F D x F D then write X 1, )~2 for the two marginals of X, and set 

JD(P,u) = {X IX 1 = #D, x2 = uD}. 

The d distance between the probability measures p and u is defined as in [27]. 

Let d be the usual (trivial) metric on F,  and  let z = { z . } ,  Y = {yn} be  the  

processes defined on F by # and v respectively. Then define 

1 
inf - -  yd)dA, d°(#'v) = xcjvO,,,,) lDl a~ f d(z'' 
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and 

(1.1) d(#, u) = l imsupdD(#,  u). 
D 

We amend the definition of ABI in [27] as follows. Let a be the shift on F z2. 

Say that a stationary Z 2 process x has a lmos t  b lock  i n d e p e n d e n c e  if for any 

e > 0 there is an N~ such that i f n  ~_ N,, R = [0, n -  1) x [0, n -  1 )N Z  2, there is 

another process Y with 

(1) dR(a,( , ,~)(y),x) = 0 for all (a,b) E Z 2 and 

(2) Y restricted to n(a, b) + R is independent of Y restricted to n(a', b') + R if 

(a, b) # (a', b'), and d(x, Y) -< e. 

Denote the topological entropy of the action a M on XM by h(a M) (this coin- 

cides with the entropy with respect to Haar measure by [16], §6). 

Let E = 8 ,  the one-dimensional full solenoid. For an 7~-module M, define 

MQ = M ®z Q and notice that MQ is still an TO-module. 

LEMMA 2.1: The system (XM,ot M) is a full entropy factor of (XMQ,Ot MQ) if  M 

is torsion free as an additive group. 

Proof'. Let ~/ : M --* MQ be given by T/(m) = m ®z 1. Then 77 is an injective 

homomorphism of additive groups under the assumption that M is torsion free, 

so ~ : XMQ ---* XM is a surjective homomorphism of compact groups. Moreover, 

is a homomorphism of TO-modules, so ~ intertwines the actions a M and a MQ 

and realises ( X M , Ot M)  as a factor of ( X MQ , o~MQ ). 

To see that the factor is of full entropy, we use the argument of [17], Proposition 

3.1. For each n > 1, let M ,  = ± M  Since M is torsion free, the action of a MQ 
- -  n! " 

restricted to the closed invariant subgroup XM,, is isomorphic to the action of 

a on XM (Mn and M are isomorphic as 7C-modules). Thus h(a M") = h(a M) 

for all n. The dual of the direct limit MQ = lira M ,  is the projective limit 

XMQ = li__mXM, so h(a MQ) = limh(a M') = h(aM). | 

As observed in [17], §3, many of the topological dynamical properties of the 

system (XM, a M) are not reflected in (XMQ, aM~); in particular (XMQ, a M*) is 

never expansive and has no periodic points other than the identity. However, 

the measurable dynamics are preserved; in particular (XM, a M) is measurably 

isomorphic to a Bernoulli shift if (XMQ, a M*) is. 
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Now let X C E z2 be any closed shift invariant subgroup. For F C Z 2, let 

7r(f) : ~Z 2 ~ ~ F  denote the projection onto the coordinates in F; 7r(f)(x) is a 

closed subgroup of E f .  

By analogy with the Fej~r kernel on T, define a positive summability kernel 

{Kn}11eN on the full solenoid E as follows. For each n > 1, let 

cn  = {r Q I Irl n and e U {0}. 

Each r E Q defines a character Xr on E under the pairing <,  >: Q x E ~ S 1 

where < r, x > =  Xr(X). 

LEMMA 2.2: The family of functions {K11}11eN on E defined by 

112 
J 

(1.2) K . ( x ) =  E (1 n 2 + 1  
j ~ . - - n  2 

forms a positive summability kernel on E. 

Proof." The sets Cn increase to Q, so the Fourier transform Kn of Kn converges 

pointwise as n --* c~ to the constant function 1. This means that the measure 

A, on E whose Radon-Nikodym derivative with respect to Haar measure on E 

is K11 converges weakly to the point mass at the identity as n ~ cx~. 

In order to see that ~:n is positive definite on Q, recall that the Fej~r kernel 

on T, defined by 

Fk(t) = ~ (1 - i---~)e2'~it 
k + l  

i~- - -n  

is a positive summability kernel. In particular, Fk is positive definite on Z. Let 

k = n 2 and notice that K,~ is supported on ~-Z. The isomorphism 3-rZ ~ Z 

which takes ~:n t o  Fn 2 shows that R:11 is positive definite. | 

3. Cycl ic  e xpans ive  m o d u l e s  

Let p be a prime ideal of TO. Since p is prime, the collection Asc(7"C/p) of primes 

associated to the module Tg/p is exactly {p}. By Theorem 6.5 of [16], this shows 

that (X•/p, o~ ~/p) has completely positive entropy if it has positive entropy. 

Following [16], §6, call a prime ideal p pos i t i ve  if it is principal with generator 

not a generalised cyclotomic polynomial in the sense of [1]. An ideal which is 
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not positive is therefore either generated by a cyclotomic polynomial or is non- 

principal; such ideals will be called null. Theorem 4.2 and Example 5.4 of [16] 

show that h(a 1z/p) > 0 if and only if p is a positive ideal. By the previous 

paragraph, we deduce that (X~/p ,a  R/p) is K if and only if p is positive. 

Theorem 3.8 of [25] shows that the system (X~lp, t~ ~Ip) is expansive if and 

only if either 7~]p has positive characteristic or Vc(p)t3 (S 1)2 = 0. Following [16], 

§7, call the ideal p expansive if (X~/p, a ~/p) is expansive. 

We now describe a standard form for principal ideals. Since any monomial is a 

unit in R, we will without comment multiply by monomials to put polynomials 

into a convenient form. 

LEMMA 3.1: For any positive expansive ideal p = (f), there is a matrix Q E 

G L( 2, Z) with the following properties: 
(1) f (Q(x,y))  = ao + alXy m' -f-a2x2y m" + ' "  q-adxdy m" with 0 < ml < . . .  < 

md. 

(2) There is a constant ,¢ = ,¢(f) > 1 such that for (z, w) • Vc(fQ), I~1 = 1 

i ~ p H e s  Izl > '~ or Izl < 1 / ~  a n d  Izl = 1 implies lwl > ~ or Iwl < 1/,~. 

Proof'. Let H(f )  denote the convex hull of the support of f ,  with f multiplied by 

a monomial to arrange that H(f )  lies in the upper-right-hand quadrant touching 

each axis. By f Q  is meant the polynomial (fQ)(z,  y) = f ( ( z ,  y)Q), where 

Notice that H(fQ)  = H ( f ) .  Q. 

An application of the shear Q~ = [ 10 11] fixes the y° slice of H ( f )  and moves 

the horizontal yJ slice j units to the right. After a finite number of applications, 

the top slice will extend further to the right than any other slice, and each vertical 

°1] ,o movo slice will have only one entry. Repeat the process with Q2 = 1 

the vertical slice of maximal degree in z far enough up to obtain the form (1). 

For (2), expansiveness shows that the sets 

C~ = {z • C I f(z, w) = 0 for some w • S' }, 

C2 = {w • C I f ( z ,~ )  = 0 for some z • S ~} 

do not meet $1; compactness shows (2). II 
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Remarks: 

(1) Notice that applying Q • GL(2, Z) does not alter the dynamics: with the 

above notation, 

(X~/(y),Q a ~/(I)) ~ (Xu/(yQ), a ~/(Iq)). 

(2) The system (Xnl(1), a ~I(I)) is measurably isomorphic to a Bernoulli shift 
if and only if the system (X R/( IQ),Q a a/(IQ)) is. 

(3) Since t det QI = 1, h(a ~/(I)) = h(a'~/(IQ)). 

(4) The form of fQ is not unique subject to the stated properties, but every 

positive expansive ideal does have such a form. 

(5) The form of the polynomial in Lemma 3.1 is also in "standard form" with 

respect to y: 

ao + a l x y  ml 4- a 2 x 2 y  m2 -4- . "  4- a d x d y  m~ = bo -1- blxn~y + " "  + brxn'y r 

where r = md, d = nr and so on. 

EXAMPLE 3.2: Let f (x ,y )  = 4 + 3x + 2xy + y. Then H( f )  is the unit square 

[0, 1] x [0,1]. Apply Vl twice to obtain 

f(Q1)2(x,y) = 4 + 3x + z2y + 2z3y. 

Now apply Q2 : 

fQ2(Q,)2(x,y) = 4 + 3xy + z2y 3 + 2z3y 4. 

[1 2] puts f intostandardform.  In this case the matrix Q = Q~Q~ = 1 3 

THEOREM 3.3: If  p is expansive and positive, then (X~/p, ct ~/p) is measurably 

isomorphic to a Bernoulli shift. 

Proof'. We first deal with some special cases. If p = (f) where f (x,  y) = 

F (x"y  b) is a polynomial in a single variable xay b then the matrix Q = . 1 

transforms (X~/p, ~ / P )  into the system defined by the polynomial F(x).  Here 

[det Qt # 1 but Bernoullicity is preserved (this is equivalent to noting that  a 

power or a root of a single Bernoulli transformation is also Bernoulli). The 

g r o u p  X72[ (F)  is isomorphic to yZ  where Y = Z[t±l]/(F(t)). The automorphism 
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aU/(F) corresponds to the automorphism l-lz fl where fl is dual to multiplication (1,0) 

by t on the module Z[t+1]/(F(t)); the automorphism a ~/(F) corresponds to the (0,1) 
full shift fl with alphabet Y. Since the original action was expansive, fi is an 

ergodic automorphism of the compact group Y. By [13], fl(l,0) therefore has an 

independent generator ~ on Y. Since 3 acts as a full shift, ~0 is therefore an 

independent generator for the Z 2 action ~, where ~0 is the "time zero" partition 

defined by ~ for the 3 direction. We deduce that (X~/p, a ~/p) is measurably 
isomorphic to a Bernoulli shift. 

If T~/p has positive characteristic, then p contains a constant s. Since p is 

positive, we must have p = (s); in this case (X~/,, au/P) is a full two-dimensional 
shift on s symbols, which is clearly a Bernoulli shift. 

Expansiveness implies that p ~ {0} (although this case is immediate: ifp -- {0} 

then (X~/p, ~/P) is a full two-dimensional shift with alphabet T, which is the 
two-dimensional Bernoulli shift with infinite entropy). 

We are left with the case where p = (f) for some non-constant polynomial 

f that is not a polynomial in one variable. Without loss of generality, we may 

assume f is in the form described by Lemma 3.1. Wc may also assume that f is 

not of the form f(x, y) = g(x", yb); if it is of this form then we pass to the action 

determined by g (the "(a, b) th root" of the action) and this will be measurably 

isomorphic to a Bernoulli shift if and only if the original action is. For brevity, 

let M = R/p .  We will show that the system (XM~,Ot MQ) has almost block 

independence and deduce that the factor (XM, oL M) is measurably isomorphic to 

a Bernoulli shift. 

The R-module  MQ is given by Q[x +1 , y+l]/fQ[x±l, y+]] and so 

(3.1) MQ ~ Q[y+l] ~ xQ[y+l] ~ . . .  ~ xd-lQ[y+l] 

as Z[y+l]-modules. Thus the group XMQ is isomorphic to (Ez) d, with the action 

of o~(0,1 ) corresponding to the vertical shift C a full shift with alphabet Ed.) The 

action of a 0,0) is dual to an automorphism of MQ, given by a non-singular matrix 

A E Ma(Q[y+I]). 

For a fixed n E N, let cn(u) be the rt th cyclotomic polynomial, and let ~o(.) 

be Euler's totient function. Let X (') be the closed invariant subgroup of XM~ 
whose dual is MQ/(cn(y))MQ. From (3.1), 

(3.2) MQ ,,~ Q[y+'] _ Q[y+l] @x~_lQ[y+l]  
= (c.(y)) e... (c.(y)) 
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Q[y+~] Q~(n), and let J~(,,) as Q[y+a]-modules. Choose an isomorphism y .  : (¢.(y)) 

be the matrix representing the automorphism r/nyr/~ -1 of Q~(n). The isomor- 

phism y(a) = T/, × - . .  × r/, then identifies MQ/(c,(y))  with Qd~(,); under this 

isomorphism the matrix A is sent to fi(en) • Ma~,(,)(Q). 

F o r a  < ble t  S~ = {( i , j )  • Z 2 [ a  < i  < b}. I f F c Z  2 , le t  PF deno teHaa r  

measure on the group "K(F)(XM¢~) C Z f .  

LEMMA 3.4: Let 

S(x) = I I  × 1-[ 
( i,j)es°_p ( i,j)es.~ +q 

where each fij  is a trigonometric polynomied on Q of the form 

N 2 

f,j(x)= Cij Xk /N(X)  • 
k = - N  ~ 

1 1 0 _ / 2 N 2  \ Then, for m = re(N) >_ 1 -F ~ $~,~-f-a), 

]" ]" × (3.3) 

where # x u denotes the independent concatenation of the measures p and u. 

Notice that the above lemma says that if ZI and Z2 are continuous random 

variables defined on ~s°p and ~s~ +~ respectively, with densities Pl and P2, and if 

the Fourier transforms P'I and ~ are supported on the bounded set of frequencies 

CN in each coordinate, then the random variables obtained by restricting Z1 and 

Z2 to XM are independent if m is large enough. 

Proof'. It is sufficient to show that for any character X on r(s°-p)(XM) x 
1 IO_I2N2 ~ ~r(sz+q)(XM), with coefficients in CN, and for m > I -{- ~ ~,;,~':'T-I/, X is 

trivial on 

?r(S°-puS'~+')(XM) C ~:(S°-~)(XM) X 7r(S~+')(XM) 

if and only if X is trivial on 7r(S°p)(XM) x 7r(S.~+q)(XM). Equivalently, we need 

to show that if EN denotes the set of characters on (~d)Z with frequencies in 

each coordinate from CN (-- the set of d-tuples of Lanrent polynomials in Q[y+g] 

with coefficients from CN), and 

(3.4) H ( m , p , q ) =  A m ( E N + A E N + . . . + A P E N ) A ( E N + A - ] E N + . . . + A - q E N )  
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2N 2 the~ H(m,p ,q )  = {0} fo~ m ___ ~ + ~o-~-; ~o~(~_~). 
Assume that h ~ H(m,p,q). By Hilbert's ireducibility theorem (see [5]), if 

e,  is a primitive n th root of unity and n is sufficiently large, then f (x,  e,) is an 

irreducible polynomial in Q(e,,)[z+~]. We claim that if (n, j ) = (n, k) = ( k, j ) = 1 
then f(x,  ei,) and f(x,  e~) have no zeros in common. To see this, notice that 

if f (x,  e~,) and f(x,  e~) have a common zero, then by irreducibility they have 

identical zeros. Since the constant terms of f(x,  eY,,) and f(x,  e~) coincide, it 

follows that f (z ,  e~) = f(x,e~). By assumption, f is not a polynomial in x 

alone, so for large n, f(x,  e~) = f(x,  e~) implies that e~ = e~. We deduce that 

the polynomial 

has d~(n) distinct zeros. 

(j,.)=l 

The characteristic equation of .4(e,) is given by 

de t (A (e . ) -Md~( . ) )=  H f (A ,e~ )= f . ( )~ ) .  
(j,n)=l 

By Lemma 3.1, any eigenvalue ~ of .4(e,,) has I~1 > t¢ or I~1 < ~¢-~. Moreover, 

A(e,,) has distinct eigenvalues so there is a matrix Q ,  E Ma~(,,)(C) with A(e,,) = 

Q,,A,Q~ 1 , where A,  = diag(~l , . . . ,  ~d~,(,,)) and the spectrum of A(e,,) comprises 

{ ~ 1 , - . . ,  ~dcp(n) }- 

Let  h(,,,) = T/(d)(h). For any n, we have 

(3.5) = (e0( , . )  + ~ - l ( , . ) e ~ ( , . )  + . . .  + . ~ - q ( , . ) e , ( , . ) )  

where each -~,~ E rl(d)(EN). Let r~' = Q~-IA, and notice that if qo(n) exceeds 

the degree of any of the polynomials in A m (EN + AEN + . . .  + APEN) U (EN + 
A -1EN +. . .  + A-qEN) then the coefficients of h are terms in the rational vector 

h(e,,) E Qd~(,), so each entry of fi(e,) and of each -~, ~" lies in CN. Let zi x CN 
be the projection of Q ~ I E ~  onto the ith axis in C d~'("), and look at the i th 

coordinate of (3.5): 

(3.6) ~'(0'o),  + ~,(a',), + . . .  ~,;(a'p,) = ((~'o), + ~.1(~) ,  + . . .  ~ .q(~) , ) .  
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We may assume that [~i[ > x; if [~i[ < ~-1 then apply the same argument to the 

inverse map. 

Since each (~ ) i ,  (c~)i E -~Zl x {0, 4-1, . . . ,  4-N2), (3.6) is equivalent to 

( 3 . 7 )  ~ m ( t / 0  - ~  n x ~  -[- • • • "~- np~ p) -~ (Trio Jr" m l ~  - 1  -~- • • • --[- mq~ -q) 

where each ni,mi E {0,4-1 , . . . ,+N2},  no ~ 0 and ~ = ~i. Write 

B ~ ~m+q(n 0 "[- nl~ "~""  "~- np~ p) and C = (mo( q + ml~  q-1 --[-... -~- ~T~,q). 

Then 

(3.8) ICl < N2( 1 + [(I + I([ 2 + " "  + I~1') < N2 (xq+' - 1 
- - s 

Let ~ denote the closed path traced out in C by ~, the ith ze ro  of f (x ,  y) for 

y = en, as y moves around S 1 from e, back to en. By the maximum modulus 

principle, 

min marx{k0 + (kl + ' "  + (Pkp} ~_ 1 

where the minimum is taken over all ki E {0, 4-1,. . . , - t-N 2 } with k0 ¢ 0. Since 

the primitive unit roots are dense, we deduce that we may choose e,, to have 

1 m+q 1 m+q (3.9) [BI > > _ _ ~ • 

Comparing (3.8) and (3.9), and noting that ( ~ ) x - q  _< ~-1, we see that 
1 2 N  ~ t t (m,p,q) = {0} for m ) 1 + lo-~ log(~--~_~) as required. | 

Let P be a finite measurable partition of XMQ at "time zero", that is an atom 

of this partition is a set of the form Pi = {x E XMQ ] z(0,0) E Qi} where 

{ Q 1 , . . . , Q r )  is a finite partition of the alphabet E. The space of P-names  

determines a finite state Z 2 process denoted (XMQ,P). 

Define a standard family of finite partitions of E analogous to the partition 

into intervals of length ~ on T. First recall that E is homeomorphic to the direct 

product T × rip zp where the product is taken over all rational primes p (see 

[29], §IV.2). Let us say that a set of the form bf +Lf.L, ~k, k ) C T is a k-interval, and 

on Zp call a cylinder set defined by specifying the first k p-adic digits a p-adic 

k-interval. The standard k th partition, Pk, of ~ is defined to be that partition 

each of whose atoms comprises a set of the form Aoo x A2 x . . .  x Ap(k) x l'I Zp 

where Aoo is a k-interval, each A n is a p-adic k-interval, and the product is 

taken over all primes exceeding the k th prime p(k). Given two points z ~ w in 

E, there is some k for which the partition Pk separates them. 
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COROLLARY 3.5: The t]nite state system (XMQ, Pk ) is almost block independent 
for any k. 

Proof: Fix k throughout. Given e > 0 and n E N, choose N(n, e) as follows. 

Let T = [0, n] x [0, n] be an n x n tile of coordinates in Z 2, and let P /  = 

VT aiJ 7pk denote the join over T of the partition T'k. Let the atoms of p T  be 

{P1 , . . . ,  Pr}. Now let N(n, e) be the least integer for which there is a family of 

trigonometric polynomials { f l , . . . ,  f~} where each f~ is a product of the form 

f~(x) -- YIT f~(xii)  and each f/'i is a trigonometric polynomial of the form 

N 2 

c(ij,s)Xk/N(t) 
k - - - N  2 

(where N = N(n,e)) and the functions { f l , . . . , f r }  approximate T ~T well in 

the following sense: there is an error set E,  # (E)  < e 2, f ,  >_ 1 on P,\E,  and 
E~=I f h < 1 + e 2. Notice that the size of N(n, e) is no larger than a polynomial 

1 Say that the functions e-approximate Pk over T in this ease. in n and 7" 
e 6 Let e i = ~ - ~ .  Now choose n(e) so that if n _> n(e), then 4m(N(a,,~l),~)n < e 

and m(g( (2r  + 1)n, < E =I m(N((2(r - j)  + 1)n, + for 

all r. This is possible because m(N, e) grows as the logarithm of a polynomial in 

N and ¼. 

Assume n >_ n(e). Tile all of Z 2 with n x n tiles T1,T2,... which are spaced 

m(N(3n,  el), el) apart. From Lemma 3.4 and the choice of m, we may choose 

functions that el-approximate Pk over each Ti, and these functions are indepen- 

dent if they are built on different tiles Ti, Tj. Moreover, we claim that they are 

independent in the following stronger sense: given a tile Ti and some collection 

of tiles {T/} disjoint from Ti, we may build a function that el approximates Pk 

over Ti and then functions on the other tiles {T i} that e2-approximate Pk over 

the tiles nearest to Ti (i.e. over a bigger tile of side 3n a distance m(N(3n,  el), el) 

away), that ca-approximate Pk over the next nearest tiles (i.e. over a bigger tile 

of side no more than 5n a distance m(N(3n, el ), el ) Jr n > m(N(3n,  e2 ), e2) away) 

and so on. By construction, these functions are all independent of the functions 

approximating 7~k on Ti, and so we may make the following claim. The join 

of the partit ion Pk can be e-approximated over any of the tiles with functions 

independent of those e-approximating Pk over some other tile. 

It follows by a basic Lemma of Katznelson (Lemma 1 of [8]) that the parti t ion 

T 'z2 (the join over the whole of 7. 2) is l ie-block-independent  when restricted to 
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the n × n tiles {Ti}. It follows (Lemma 6.3 of [26] extends in a straightforward 

manner from Z to Z 2) that (XM~, 79k) is within 44e (d) of an n-block independent 

process when restricted to the tiles, which is all but e of the time. 

Hence (XM~, 7=)k) is within 45e of a n-block independent process, and hence is 

almost block independent. The block independent process to which it is close may 

be though of as the process obtained by independently concatenating (XMQ, 7~k) 
restricted to each of the tiles. | 

For each partition P of XMQ arising from a standard partition of ~ at time 

zero, the finite state process (XM¢, :Pk) is almost block independent by Corollary 

3.5, and hence is finitely determined by a standard argument (see Appendix B 

of [28] for this extension of the argument of [27] from Z to Z2). It follows from 

[7], Theorem 1.1 that (XMQ,'Pk) is measurably isomorphic to a Bernoulli shift. 

If x ¢ y are distinct points in XMQ then they differ in some position, so for 

some k they lie in different atoms of :P~ z2). Thus the algebra generated by :Pl z2) 

increases to the whole a-algebra B modulo null sets. By [20], §III, Theorem 5 (the 

Monotone Theorem for amenable group actions), we conclude that (XMQ, Ot M~) 
is measurably isomorphic to a Bernoulli shift, which is Theorem 3.3. | 

Let (B, U) be some Z 2 action on a Lebesgue space B. If ~ : B x Z 2 --r XM 
is a measurable skewing function, then the skew product (B × XM, U >~ oL M) is 

the Z 2 action defined by 

(3.1o) (U )4~ o~M)(n,m)(b,x) M = ( V ( . , , , , ) ( b ) ,  + 

In order that this define a 7.2 action, ~ must satisfy certain consistency conditions; 

these may be thought of as follows. The generators ~0,0) and ~(0,1) can be any 

measurable functions; q0(0,0) = lxM. Then the whole cocycle q0 is generated by 

the following relations: 

(1)  ~P(nq-l,0) = Ot~n,0)~(1,0 ) "4-~(n,0), 
M (2) ~(0,m+l) = °~(0,m)~(0,1) + qa(0,m), 

M (3) ~(.,m) = a(0,m)~(.,0) + ~(0,m), 

LEMMA 3.6: Under the assumptions of Theorem 3.3, (B x XM,U >4~ a M) is 
almost block independent relative to the base ( B, U). 

Proof." We prove this in two ways for the case where f is not constant (the case 

of f constant is a full group shift and may be dealt with directly). Firstly, we 
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use a technique due to Rudolph (see [4]) to split the skew product. The second 

method is to notice a rotation invariance in the proof of Theorem 3.3. 

Define a new Z 2 action, denoted U : ~  (a M x a M) on the product space B x 

XM × XM by setting 

M × 

M M = + + 

The automorphism of the measure space B x X M X X M given by 

shows that U >4~ (a M × a M) ~- (U )4~ Ot M) X OL M, since O(U ~ (a M × olM)) = 

((U )4~ a M) × aM)O. Now (XM, a M) is by assumption almost block independent, 

so the third component (XM, a M) is certainly almost block independent relative 

to the first two components (B × XM, U ~ aM). Now apply the isomorphism 

0 to see that in (B x XM x X M ,  V :~a (a  M N aM)), the third component is 

almost block independent relative to the other two. However, the transformation 

x2 ~-~ aM(x2)+  ~0(b) is completely independent relative to the base (B, U) of the 

transformation xi ~-~ aM(x1) + ~(b). So the third component is almost block 

independent relative to (B, U). Thus, in (B XXM, U )4~aM), (XM, a M) is almost 

block independent relative to the base (B, U). 

For the second argument, let .h~ = 7~/(f) where f is a non-constant poly- 

nomial, and let c : XM~ ---* XM be a measurable section of the quotient map 

XM ~ XM~. Define ~' : B --4 XMQ by 9'(b) = c(~(b)). Then ~p' determines a 

skew product action (B x XMQ, U ~ ~, a Mo) and if this is almost block independent 

relative to the base then so too is (B x XM, U >~ aM). 
Notice that the action on the fibre XMo is affine, so it is sufficient to show the 

following. If (s(,,m)) is any Z 2 sequence of elements of XMQ, then the process 

defined by (a~Q,m)(X) + s(,,,,)) is almost block independent. From the proof of 

Theorem 3.3 it is clear that  rotation by elements of XMQ does not affect the 

independence of the frequencies Cp(~) across the gap of size re(e). The same 

argument as that used above then shows that the skew product (B x XM~, U )4~, 

aMQ) is almost block independent relative to the base. 

If the polynomial f is constant, say f = s, t h e n  (XM,a M ) is a Z 2 group shift 

on Z/sZ (see §3 of [13]). In this case we can show directly that  the skew product 
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(B  x XM,  U >~¢a M) measurably splits in the sense of [13], that is, it is isomorphic 

to the direct product (B × XM,  U × o~ M) via an isomorphism preserving the base 

factor. This shows Lemma 3.6 a fortiori for this case. The argument is an 

immediate extension of the single automorphism case described in [13] and [18]; 

we describe it briefly for completeness. 

Let w : B × XM ---* B × XM be a map of the form w(b, x) = (b, x +/3(b)) where 

: B --* X M  is measurable. The map w is a measurable isomorphism between 

(U)4~ ~M) and the direct product (U × c~ M) if and only if fl is a measurable 

solution of the functional equation 

(3.zl) ~(n,m)(b) = oL~n,m)/~(b ) --/~(U(n,m)(b)) 

for all b 6 B and (n, m) 6 Z 2. 
A Z2 

Now XM n/<s) (z/sz) so = with each a 

measurable map from B to Z/sZ .  Moreover, the action of C~ M is the group shift, 

so the equation (3.11) is equivalent to 

(3.12) ~(i,j) ~b ~ fl(i,D+(,,m)(b) //(ij)(U(,,,~)(b)) 
(,,m)L) = 

for all i , j ,  n, m 6 Z and b 6 B. This equation is readily solved: let fl(0,0) = 0 and 

inductively define ~(i,j) for all i , j  6 Z. The consistency relations satisfied by 

ensure that /9  will be consistently defined by (3.12). | 

4. E x p a n s i v e  ac t ions  o n  c o m p a c t  groups  

We now use the algebraic description of all pairs (X, a) where X is a compact 

abelian group and a is an expansive action of g a on X provided by [10], together 

with the relativized isomorphism theorem for Bernoulli g d actions ([7]), and a 

characterisation of the K property from [16] to extend §3 to the general expansive 

situation. The algebraic techniques used here are closely related to those of [25] 

and [16]. 
For a given prime ideal q C T~, an A-module N will be called q - e l e m e n t a r y  

if it has a prime filtration of the form 

(4.1) N = Ns D N8-I D"- D No = {0} 

with succesive quotients Ni "" -~ :for each j = I,.., s. Notice that this is a N i _ l =  q 
stronger property than being q-primary. In genera/, a q-primary module has a 
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prime filtration with succesive quotients of the form ~ where each pj __D q. This 

distinction lies at the heart of the topological structure of group automorphisms, 

but will be seen not to affect the Bernoulli property if it is present. We will 

return to this point in §6(5). 

LEMMA 4.1: / / 'X = X M  iS a compact abelian group and a = ol M is all expansive 

action of Z 2 on X with completely positive entropy, then (X, a) is a/ 'actor of a 

finite cartesian product of  expansive 7. 2 systems with completely positive entropy 

(XNj,  a Nj ), j = 1 , . . . ,  k, where each Nj is pj-elementary /.or some prime ideal 

pj associated to M.  

Proof: Since (X, a) is expansive, the corresponding R-module M is Noetherian 

by Theorem 5.2 of [10]. Let the associated primes of M be {Pl , . . .  ,Pn}; each of 

these is expansive and positive in the sense of [16] by Theorem 3.9 of [25] and 

Theorem 6.5 of [16]. By the primary decomposition theorem for M, there are 

p/-primary modules Lj ~- M M-7' j = 1 , . . . ,  n, with Nj"--1 Lj = {0}. It follows that 

the canonical map 

(4.2) ~ : M -~ LI @ .." ~ L,~ 

is an injective T&module homomorphism. The dual map is therefore a surjective 

map commuting with the actions: 

(4.3) : X L 1  X "'" X X L n  ~ X M  

realises (XM,  a M) as a factor of a direct product of p j -pr imary modules. 

To reduce to pj-elementary modules, consider a fixed j .  Choose a prime fil- 

tration of Lj,  

s s - - 1  t 0 (4.4) Lj = Lj D Lj D . . .  D Lj D . . .  D Lj = {0} 

L ~  ,~ ~ for r = s, 1 where qr ~ Pj for r -- with succesive quotients = ~ . . . ,  
J 

s , . . . , t  + 1 and qr = PJ for r = t , . . . ,  1. Choose a polynomial h = h , . . .  ht+l 

with each hk E qk\P/. The map Tj : Lj --~ L~ given by Tj(a) = ha is injective, 

so the dual map 

(4.5) ~ j  " X L }  "-'} X L j  

L( t realises ( X L j  , ol Lj ) as a factor of ( X L }  , ol , ). Let Nj -- Lj. 



Vol. 79, 1992 Z 2 ACTIONS ON COMPACT G R O U P S  241 

By composing ~1 x -..  x ~ .  with ~, we get a factor map 

(4.6) 0 : XN~ x . . .  x X N .  ---+ X M .  

Each of the associated primes of M is expansive and positive so we are done. 
| 

THEOREM 4 . 2 : / 5  X = X M  iS a compact abdian group and a = ol M i8 an 

expansive action o[ Z ~ on X,  ~hen ( X,  a) is measurably isomorphic ~o a Bernoulli 

shif~ if  and only i f  (X ,a )  has completely positive entropy. 

Proof: By Lemma 4.1 we may assume without loss that  M is a p-elementary 

module for some expansive positive prime ideal p. Form the prime filtration 

(4.7) { 0 } - - - - M 0  c M 1  C . . .  c M s - 1  c M 8  = M  

with Mi " - - ~ f o r i = l ,  s. Mi-1 - -  p " ' ' '  

Let Xi = M~ C M. Then the annihilator of the chain (4.7) is 

(4.8) X M  = Mo ~ ~ X1 ~ X2 ~ ""  ~ X . _ I  ~ X .  = {0} 

with x,_~ ~ ~ for i = 1 , . .  ,s. For brevity, say that a closed invariant subgroup Xi = p 

Y of X is B if the action of Z 2 obtained by restricting a M to Y is measurably 

isomorphic to a Bernoulli shift. Assume that Xt+l is B. Then Xt+l C Xt is a 

closed invariant subgroup, so (Xl, a M [ x I  ) is measurably isomorphic to the skew 

x~ ¢)), where is the Z 2 product of (Xt+l, a MlXl+a) with (x~+,, ~ action induced 

by otMlxi on the quotient group x~ Now by Lemma 3.6, the skew product Xl+l " 

_At_ ~) almost block independent relative to the base, so is 
by the relative isomorphism theorem ([7]), it is measurably isomorphic to the 

direct product (Xl+a,aMIx~+t) x (_Kt_ ~). Thus, (Xt, aM]x,) is measurably 
Xl+t ' 

isomorphic to the direct product of two Bernoulli shifts, and we are done. | 

Let r(a) denote the Pinsker partition of the Z 2 action a: ~r(a) is the supremum 

of the collection of all finite measurable partitions ~ with h(a, ~) = O. For a 

discussion of the Pinsker partition and proof of the result used below, see §6 of 

[16]. 
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COROLLARY 4.3: If  X is a compact abe//an group and a is an expansive action 

of Z 2 on X ,  then ( X ,a )  is measurably isomorphic to a Bernoulli shift relative to 

Proof: As in Theorem 4.2, we may assume that there is a finitely-generated 

T~-module M with (X, a) algebraically conjugate to (XM, aM). By Theorem 6.5 

of [16], there is a unique submodule N of M with the property that  7r(a M) is the 

partition into cosets of the closed invariant subgroup N ± of XM. Notice that  the 

dual of N ± is M/N,  while the dual of X M / N  ± is N. The short exact sequence 

~" /N  ± "~ ~ 0 0 --+ N l = ~ XM[ g ~ X M  ~- M ~ X M  = X N  

shows that  ( X M , a  M) is  measurably isomorphic to a skew product of the sys- 

tem (XM/N, a M/N) w i t h  (XN, aN). Since XN is the factor (in the usual sense) 

of XM corresponding to the Pinsker algebra it(aM), the action on each fibre 

(XM/N,  a M/N) is K .  By assumption, the action of a M o n  XM is expansive, so  

the restriction a M/N acts expansively on the closed invariant subgroup X M / g .  

Now (XM, a M) can be broken down as above into a factor of a succesion of afi:ine 

skew products with K expansive fibre action, so by Lemma 3.6 and the relative 

isomorphism theorem, (XM,  a M) is Bernoulli relative to (XN, aN). 1 

5. E x p o n e n t i a l  r e c u r r e n c e  

The methods of [15] may be applied directly here to show that the independence 

property of Lemma 3.4 implies that expansive K systems corresponding to cyclic 

modules axe exponentially recurrent. 

Consider a Z 2 action a by measure preserving transformations on the Lebesgue 

space (X, 13, p) and let Rk = {(n,m) E 7,,2 I m~{Inl ,  Iml} = k}. Let U ~ have 

#(U) > 0, and let ru(x) denote the least positive integer k with the property 

that there is a point (n, m) E Rk with a(n,,0(x) E U. Notice that rv(x) is finite 

almost everywhere on U by Poincar6 recurrence applied to a(1,0) say. The action 

a is e x p o n e n t i a l l y  r e c u r r e n t  if r,(U) = #{x E U I ru(x) = n} decays at a 

rate e -xn2 for some A > 0. 

Let T1 and T2 be two actions of Z 2 by homeomorphisms of compact metric 

spaces M1 and M2, preserving Borel probabilities Vl and v2 respectively. The two 

actions are f in i ta r i ly  i somorph ic  if there exist null sets N1 C M1, N2 C 3//2 

and a homeomorphism ~ : MI\N1 --* M2\N2 with qoT1 = T2T. It is clear that 
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exponent ia l  recurrence is an invariant  of  f ini tary i somorphism,  and  an  example  

due to Smorodinsky  show tha t  it is not  an invariant  of measurab le  i somorph ism 

(see [15] for a discussion of this). The  a rgument  of [15], Propos i t ion  1, m a y  be 

easily modif ied to show the following. 

LEMMA 5.1: The Bernoulli Z ~ action fl, defined by the shift on Y = { 1 , . . . ,  s} z2' 

with measu re  m = p z~, (where p is the (p l , . . .  ,ps) measure ,  Pi > O, )"]pi = 1) 

and  met r ic  

p(a,b) = y]~ la(" ,m)-  b(.,m)12-max{InHrni} 
(n ,m)EZ 2 

has exponential recurrence. 

Proof: If  U C Y is open,  then  U contains a cylinder set 

v = {~ ~ Y I a(i , j)  = b(i,j) for ( i , j )  E (kl, k2) + Bk) 

where Bk -- [0, k - 1] x [0, k - 1] n Z 2. Then  

ra{a E Y I ~v(a) = ~ + 1) < m( ~ &i,~)(r\v)  
i,j=l 

= H m(fl<i, j)(Y\V)) <_ [m(Y\V)a/k] "" 
i,j=l 

as required. I 

THEOREM 5.2: I f  ~ / P  is expansive and has completely positive entropy, then 

it has exponentiM recurrence. 

Proof: This  is a s t ra ight forward  extension of the p roof  of T h e o r e m  1 in Lind 's  

p a p e r  [15]. Let X = Xlz/p, and let # denote  Haar  measure  on X .  Let U C X 

be an open subset  with #(U) E (0, 1) (if # (U)  = 1 then  rn(U) decays to zero 

immedia t ly) .  Since t r igonometr ic  polynomials  are dense in L2(X) ,  we m a y  find 

a funct ion f u  " X --~ R of the fo rm 

I j=l 

1-I 
i = - I  j = - t  
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where each .fii is a trigonometric polynomial on E, 

N 2 

km-N ~ 

having the property that fv(z)  _> 1 if z ¢ U and f x  fvdp = A < 1. Let m _> 
1 lo_/2N2 h 1 + ~ gkg-:'T-1) where t¢ = it(p) is defined as in Lemma 3.1. Then, putting 

p = 

P 
]A{X E X I rU(X) = n '3  L 1} <~ ]/({ N ol(21%m'+l)(a'b)(X\U)) 

a,b=l 
P 

= Ix YI ~(2Z+m+l)(.,b)lx\vd~ 
a,b=l 

Ix" ~-- H a(21+m+l)(a,b) fudl l  
a,b=l 

P 

= H Ix  a(21+m+l)(a,b)fudp 
a,b=l 

__ (AO/(21+m+~)P) "~, 

showing exponential recurrence. | 

The above shows that the finitary invariant of exponential recurrence does not 

provide an obstruction to the following conjecture. 

CONJECTURE 5.3: Ira 1e/p is expansive and has completely positive entropy, then 
it is t]nitarily isomorphic to a Bernoulli shift. 

For Z actions, hyperbolic toral automorphisms are finitarily isomorphic to 

Bernoulli shifts since they have Markov partitions: mixing Markov shifts of the 

same entropy are finitarily isomorphic by [9], and a Bernoulli shift is a mixing 

Markov shift. 

6. Remarks  

(1) The Bernoullicity of (Xh aM[x,) shows that the skew product 

( s) 
Ai+ 1 
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m e a s u r a b l y  splits:  it is Bernoulli and has the same entropy as the direct prod- 

uct (by the addition formula for Z d actions, [16] Appendix B), which is a direct 

product of two Bernoulli shifts, so it is measurably isomorphic to the direct prod- 

uct. The proof that skew products with ergodic group automorphisms satisfying 

weak specification algebraically split (Theorem 4.2 of [14]) extends to Z 2 actions 

with weak specification (see [23] for the definition of weak specification in the 

Z 2 setting for finite state space). Does an expansive Z 2 action corresponding to 

a cyclic module satisfy weak specification? If not, is the probabilistic version of 

weak specification afforded by Lemma 3.4 sufficient to show that skew products 

split? 

(2) In [16] it is conjectured that for Z a actions on compact abelian groups, the 

K property is equivalent to being measurably isomorphic to a Bernoulli Z d shift. 

Our methods readily extend from Z 2 to Z d, but it should be emphasised that the 

assumption of expansiveness is an enormous simplification. Firstly, the class of 

compact groups that can carry an expansive action is very limited: in particular, 

expansiveness implies that the action has the Descending Chain Condition (see 

Definition 3.1 and Theorem 5.2 of [10]). Secondly, expansiveness provides a 

uniform hyperbolicity, expressed in our setting by the number x > 1. A special 

case of this conjecture, namely the non-expansive action corresponding to the 

module R / ( 1 + x + y ), is shown to be measurably isomorphic to a Bernoulli 

shift in [28], by an ad hoc argument. For the general non-expansive case, more 

delicate arguments will be needed, as in the case of a single ergodic automorphism 

([13], [8], [18]). Beyond this conjecture there is the following question: for Z a 

Markov shifts, is the K property equivalent to being measurably isomorphic to 

a Bernoulli shift? In the case d = 1 this is well known to be so ([19]). For d > 1, 

a partial result has been shown by Rosenthal ([22]): a higher dimensional K 

Markov shift on a finite alphabet has the weak Pinsker property. 

(3) The familiar phenomenon of measurable isomorphism without topological 

conjugacy for total automorphisms (see for instance [10], Examples 6.6(3)) has a 

higher dimensional analogue. The only difference is that there will typically be 

infinitely many topological conjugacy classes in a fixed measurable isomorphism 

class, because the relevant ideal class group is infinite. Let L = Ti2/A'R.  2, M = 
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TI~ / B ~  2 and N = R2 /CTI 2 where 

0 3 + y  ' 0 3 + y  0 3 + y "  

By [16] (Example 5.6), h(a L) = h(a M) = h(a N) = log9. Moreover, the three 

systems are expansive and K. We deduce that they are measurably isomorphic 

to each other. In order to see that they are not topologically conjugate, it is 

enough to notice that 

L M 
( 1  - x, 1 - y)L ~ Z/4Z $ Z/4Z,  (1 - z, 1 - y ) M  '~ Z/16Z 

and 
N 

( 1  - x, 1 - y )N  ~ Z/8Z $ Z/2Z,  

which shows that L, M and N are not isomorphic as A-modules.  By [25], 

Corollary 4.3, ( X L , a L ), ( X M , o~ M)  and ( X N , oL N)  are therefore not topologically 

conjugate. 

(4) The first part of the proof of Theorem 3.3, dealing with the case where 

p = (f) and f ( x , y )  = F(xay b) is a polynomial in a single monomial, may be 

seen in a much more general setting. Let (Y, C, z/) be a Lebesgue space and let 

So be an invertible measure preserving transformation of Y. Let (X, 13, #) = 

rLez(Yi ,Ci ,  ui) where ~ = Y ,  Ci = C and ui = u for all i • Z. Now define a pair 

of commuting invertible measure preserving transformations S, T on (X, B, #) by 

( T x ) ,  = x ,+l ,  the full shift, and (Sx) ,  = S0(x,,). The Z 2 action fl generated by 

S and T has been studied by Conze [3] and Kaminski [6]. We observed that fl 

is Bernoulli when So is Bernoulli. Conze (example (3) after Theorem 2.3 in [3]) 

has shown that h(So) = h(fl). Kaminski has shown that fl is K if and only if So 

is K (Theorem 3 in [6]), and that fl is Bernoulli if and only if So is (Theorem 5 

in [6]). 

(5) The distinction between p-primary and p-elementary modules can be seen 

in a very familiar dynamical setting; (3) above provides an illustration of this. 

Here we describe the simplest possible situation where this phenomenon arises, 

namely Williams' example (see Examples 6.6(4) of [10]). Let aA and aB be the 
1 0] 

respectively. Then ~A and a s  are measurably isomorphic but  not topologically 
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conjugate because A and B are not conjugate in GL(2, 7,). The  corresponding 

S = 7,[x+l]-modules are 

S 2 S 2 
M A  = and M B  = 

(A  - x I ) S  2 ( B  - z I ) S  2" 

Both modules are (x ~ - 4z - 1)-primary, but only the first is (x 2 - 4x - 1)- 

elementary. In fact M A  ~ S / ( x  2 - 4 x  - 1). The module MB has a prime filtration 

of the form M s  = M D N D {0}, with first quotient g / { 0 }  ~ S / ( x  2 - 4x - 1) 

and second quotient M / N  ~ S / ( z  2 - 4 x -  1) + p  for some ideal p ~ (x 2 - 4 x  - 1). 

Corresponding to this filtration, there is a measurable realisation of (T 2, aB) as 

an extension of (T2,aA) by the system corresponding to S / ( x  2 - 4x - 1) + p. It 

follows that  this extension cannot measurably split, since if it did the Bernoulli 

dynamical system (T2,aB)  would have a zero entropy factor. This contrasts 

with extensions in the reverse order: a fundamental result of Lind (the Splitting 

Theorem of [13], §2) states that an extension of anything by an ergodic compact 

group automorphism splits. 
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